
RCEVIL.NET
A Super Serial Story

Jared McLaren
April 20, 2019 (BSides Iowa)

ABOUT ME

• Professional Career
• Managing Principal @ Secureworks Adversary Group

• Technical Lead of Application Security Testing
• Majority of career in defensive security, focus on applications
• Alphabet soup of defensive, offensive certifications

• Personal Side
• Husband and Father
• Competitive Cyclist
• Recovering triathlete, occasional duathlete
• Belgian & German beer fan

WORDY WARNING

• Slides created for offline reference
• A few ‘follow along at home’ sections
• Easy to spend hours on each individual topic

FOUNDATIONAL
COMPONENTS

Understanding
(De)Serialization

(DE)SERIALIZATION OVERVIEW

• Serialization is used to package data
• Packaged data can later be consumed via Deserialization
• Common examples of simple data types:

• XML
<person>

<firstName>John</firstName>
<lastName>Doe</lastName>
<age>35</age>

</person>

• JSON
{"person":

{"firstName": "John", "lastName": "Doe", "age": 35}
}

REAL WORLD .NET (DE)SERIALIZATION

• Applications require use of actual objects
• More than just text and numbers

• Serializers need to support ability to store/retrieve objects
• .NET offers extreme flexibility to store Type (object) data

• Type to be instantiated upon deserialization is stored in serialized package
• This enforces proper Type of data upon deserialization

• XML and JSON are only two of many types of Serializers in .NET
• Common to use binary serializers rather than textual XML/JSON
• Example: BinaryFormatter()

DESERIALIZATION PROBLEMS

• Can you trust the Type being deserialized?
• Serializers don’t have native anti-tampering checks

• Some standard .NET types execute methods via instantiation
• What if a malicious user…

• Understands which (de)serializer is in use server-side…
• Crafts a .NET object that executes methods once instantiated…
• Serializes the crafted .NET object into a format that deserializes cleanly…
• States the Type as their crafted .NET object for Deserialization

• These paths to code execution are referred to as gadgets

.NET DESERIALIZATION GADGETS
• Known, unpatched deserialization gadgets exist in .NET

• Example: TypeConfuseDelegate
• Gadgets can be implemented in various formatters (Serializers)

• ObjectStateFormatter, BinaryFormatter, XmlSerializer, etc
• Difficult to patch known gadgets in .NET

• Serializers and objects were designed to be extremely versatile
• .NET Deserialization Payload generation using ysoserial.net [1]

• Exploit payload creation using known gadgets in given formatters
• TL;DR

• Malicious serialized data, when deserialized, can result in code execution
• HMAC validation is important; enforces anti-tampering with a server-side key

[1] https://github.com/pwntester/ysoserial.net

THE ATTACK
VECTOR

Microsoft .NET ViewState

MICROSOFT .NET VIEWSTATE

• Microsoft IIS ViewState
• Object passed between client & server

• Stores both user-submitted and application information
• Protected by HMAC crypto

• HMAC tagged to the end of a ViewState object
• If server-side HMAC routine checks out, ViewState is processed
• If HMAC check fails, ViewState error occurs

• ViewState is commonly also AES encrypted prior to HMAC
• Crypto and/or HMAC offers relatively effective ViewState tamper protection

IIS MANAGEMENT COMPONENTS
• Validation Key

• used to sign the ViewState HMAC
• Decryption Key

• used for ViewState symmetric crypto
• Validation Method

• MD5, SHA1, HMACSHA256|384|512
• Encryption Method

• DES, 3DES, AES, Auto
• Load Balanced Environment Considerations

• Keys can not be autogenerated (default behavior)
• Must hard-code keys on all IIS servers in the pool
• These values are stored in the file web.config

UNDER THE HOOD: VIEWSTATE

• The .NET Page object is used for active content (i.e. ASPX)
• Page objects can utilize ViewState content
• ASPX files instantiate the Page object

• ViewState is a .NET StateBag object
• …which is serialized by LosFormatter
• …which implements ObjectStateFormatter

• Hint: Remember that ysoserial.net supports ObjectStateFormatter?

HANDS ON

• Download the tool dnSpy
• https://github.com/0xd4d/dnSpy

• Open up the .NET library ‘System.Web.dll’
• Expand the branch System.Web.UI
• The following ‘interesting’ objects are under this namespace:

• Page
• LosFormatter
• ObjectStateFormatter

https://github.com/0xd4d/dnSpy

EXPLOIT
ROADMAP

Moving from zero to hero

EXPLOITATION PATH

• Utilize ysoserial.net to generate a malicious ObjectStateFormatter payload
• Sign the payload with a valid HMAC
• Submit this payload as a ViewState
• The server will:

• Validate our HMAC
• Deserialize our malicious payload
• Reward us with riches

• Question: What do we need to make this scenario work?
• Answer: The server’s Validation Key for use in the HMAC routine!

PREREQUISITE: KEYS

• We need the server’s validation key to exploit the issue
• Required to generate a valid HMAC

• Target file: web.config
• How can we learn about the keys in this file?

• Application Flaws:
• Local File Read
• XML External Entity Processing

• OSINT:
• Use of public project (Github, etc) with hard-coded keys
• PasteBin, StackOverflow, etc

• Other:
• File Upload, open file share, lateral movement, etc

GENERATING THE HMAC
• Hands On with dnSpy:

• System.Web.UI.ObjectStateFormatter.Deserialize(string, Purpose)
• Default IIS settings with only HMAC validation leads us here:

• MachineKeySection.GetDecodedData()

• Values:
• array: The ViewState (including its HMAC)
• this.GetMacKeyModifier(): Get the modifier, akin to a salt value
• 0, num, ref num: Length values; num = array.Length

• Next up: How is the modifier calculated?

GENERATING THE MODIFIER

• Hands on with dnSpy:
• System.Web.UI.ObjectStateFormatter.GetMacKeyModifier()

• First, clientStateIdentifier is generated via Page.GetClientStateIdentifier()
• Get hash code* of upper-case directory name
• Get hash code* of upper-case page name, convert ‘.’ to ‘_’ in ‘.ASPX’
• Add the hash codes together as an unsigned integer

• Next**, place the unsigned integer values into a byte array in reverse order
• This effectively generates a ‘salt’ specific to the target web page

*The hash code generation is dependent on the .NET framework

**There are additional steps if ViewStateUserKey is enabled

GENERATING THE MODIFIER

• Simplified, basic modifier generation code:

GENERATING THE HMAC

• Hands on with dnSpy:
• System.Web.Configuration.MachineKeySection.GetDecodedData()

• Now that we have the modifier, back to HMAC calculation
• The cliffs notes:

• Extract the payload from the ViewState (i.e. strip off the HMAC)
• Generate HMAC of (payload + modifier)

• HMAC Digest: Validation Method specified in IIS Configuration (ex: HMACSHA256)
• HMAC Key: Validation Key specified in IIS Configuration

• If server-side HMAC matches user-submitted HMAC, Deserialize the data

EXPLOITATION PATH (REVISITED)

• Utilize ysoserial.net to generate a malicious ObjectStateFormatter payload
• ysoserial.exe -g TypeConfuseDelegate -f ObjectStateFormatter -o base64 -c calc.exe

• Sign the payload with a valid HMAC
• We now know the details of how this is performed

• Submit this payload as a ViewState
• Submit via POST as the __VIEWSTATE parameter value

• The server will:
• Validate our HMAC
• Deserialize our malicious payload
• Reward us with riches

EXPLOITATIONShow me the tool already!

TOOL DROP: RCEVIL.NET

• Custom exploitation tool using known validation keys
• Verified on fully-patched Server 2012 R2, 2016, 2019
• Supports MD5, SHA1, HMACSHA256|384|512 Validation
• Coordinated disclosure effort with Microsoft

• This is known behavior when keys are disclosed
• Full permission to discuss publicly
• Don’t expect a patch!

• Bonus: No public tools or documentation appear to exist in this space

TOOL USAGE

Usage: RCEvil.NET.exe [options]
Options:
-u The URL of the ASPX page (Required)
-v The validationKey from web.config (Required)
-m The validation method used: MD5|SHA1|HMACSHA256/384/512 (Required)
-p The base64 payload generated from ysoserial.net (Required)
-h Show the help message

• Tool Output: malicious ViewState with valid HMAC

TOOL USAGE TIPS

1.The web.config will specifically state the validation and decryption type

2.Burp’s ViewState tab; Note it’s encryption & doesn’t align on a 16-byte block
(SHA1: 20 bytes, HMACSHA256/384/512 are all 16-byte block sizes)

SENDING THE PAYLOAD

• Finally, send via __VIEWSTATE to the target ASPX page
• The server will detect an invalid ViewState after deserialization
• Too late; your payload has already executed server-side!

EXPLOIT REGRESSION TESTING

• Sites configured for AES will still accept non-encrypted payloads
• Even if you only have the Validation Key, you can still RCE

• Sites configured for non-encrypted payloads will accept AES packets
• Perfect for IDS/IPS Evasion

• The target web page can be completely empty
• IIS parses ViewState automatically regardless of use within the page

• Server 2019 may state ‘SHA1’ but implement ‘HMACSHA256’
• By default IIS doesn’t follow the new crypto path in v4.5

• https://devblogs.microsoft.com/aspnet/cryptographic-improvements-in-asp-net-4-5-pt-2/

https://devblogs.microsoft.com/aspnet/cryptographic-improvements-in-asp-net-4-5-pt-2/

EXPLOITATION NOTES
• Exploitation takes place entirely in memory

• This *should* be an entirely diskless exploitation process
• Programs launched via exploitation are sticky!

• Restarting IIS will not kill programs launched via exploitation
• Shutting down IIS will not kill programs launched via exploitation
• You must manually kill processes or reboot the server

• __VIEWSTATEGENERATOR is modifier value in reverse order
• Value presented by server starting in .NET v4.5.2
• Some interesting decoupling of .NET tool dependencies here!

• Blue Team visibility:
• Payloads generated by the public version of RCEvil.NET are not encrypted
• Host-based protections may note the IIS worker process launching cmd.exe

DEMO
Windows Server 2012
Windows Server 2016
Windows Server 2019

DEMO SPECIFICATIONS
• Server 2012 (IIS 8)

• Validation: HMACSHA512
• Encryption: Auto (plaintext)
• Target page implements ViewState

• Server 2016 (IIS 10)
• Validation: SHA1
• Encryption: TripleDES
• Target page implements ViewState

• Server 2019 (IIS 10)
• Validation: HMACSHA256
• Encryption: Auto (plaintext)
• Target page is an empty file named ‘blank.aspx’

WRAPPING UPFinal Thoughts

CONCLUSION

• Don’t ever, EVER use keys copied from the web
• Review your open source projects for default keys
• If your web server is ever compromised, regenerate your keys!
• If your web.config was modified unexpectedly, regenerate your keys!
• If your web site has a file read or XXE flaw, regenerate your keys!
• When in doubt, regenerate your keys!
• Future disclosures:

• Applied research and findings (Super exciting stuff here!)
• Significantly expanded the attack surface (Ditto!)

REFERENCES

• Learn more about applied .NET Deserialization attacks:
• https://fr.slideshare.net/ASF-WS/asfws-2014-slides-why-net-needs-macs-and-

other-serialization-talesv20
• https://speakerdeck.com/pwntester/attacking-net-serialization

• Advanced .NET Deserialization reading:
• https://blog.scrt.ch/2016/05/12/net-serialiception/
• https://googleprojectzero.blogspot.com/2017/04/exploiting-net-managed-

dcom.html
• https://media.blackhat.com/bh-us-

12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf

https://fr.slideshare.net/ASF-WS/asfws-2014-slides-why-net-needs-macs-and-other-serialization-talesv20
https://speakerdeck.com/pwntester/attacking-net-serialization
https://blog.scrt.ch/2016/05/12/net-serialiception/
https://googleprojectzero.blogspot.com/2017/04/exploiting-net-managed-dcom.html
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf

THANK YOU!

• Jared McLaren
• Twitter: @jared_mclaren

• Slide Deck
• https://illuminopi.com/

• RCEvil.NET download link
• https://github.com/illuminopi

• Stay tuned for future research on this topic…

https://illuminopi.com/
https://github.com/illuminopi

